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Abstract 

Many high performance applications run well below the peak arithmetic performance of 
the underlying machine, with inefficiencies often attributed to a lack of memory bandwidth. 
In this work we examine two emerging media processors designed to address the well-
known gap between processor and memory performance, in the context of scientific 
computing. The VIRAM architecture uses novel PIM technology to combine embedded 
DRAM with a vector co-processor for exploiting its large bandwidth potential. The Imagine 
architecture, on the other hand, provides a stream-aware memory hierarchy to support the  
tremendous processing potential of the SIMD controlled VLIW clusters. First we develop a 
scalable synthetic probe that allows us to parametize key performance attributes of VIRAM 
and Imagine while capturing the performance crossover point of these architectures. Next 
we present results for two important scientific kernels each with a unique set of 
computational characteristics and memory access patterns. Our experiments isolate the set 
of  application characteristics best suited for each architecture and show a promising 
direction towards interfacing leading-edge media processor technology with high-end 
scientific computations. 
 
1 Introduction 
 
Traditionally, HPC technologies have been based on custom hardware designed 
specifically for that market. However, recent market forces have caused most modern 
supercomputing systems to rely on commodity based components. Since multi-media 
applications are becoming the dominant consumer of computing cycles [17], there is a 
correspondingly large effort to improve chip technology and ultimately create commodity 
components designed to efficiently process high-end media applications. Therefore it is 
important for the high-end scientific community to leverage the efforts of media processor 
development and investigate the overlap between the architectural requirements of both 
domains. From an applications perspective, both scientific and media processing fields 
share many of the same computational algorithms and can contain a high volume of data-
parallelism:  examples include linear algebra kernels as well as spectral transformations. In 
this work we examine two novel general-purpose media processors, each representing 
significantly different balances of architectural characteristics, in the context of scientific 
computing kernels. 

Historically, embedded multimedia and signal processing chips have been 
manufactured as custom-designed ASICs; however, this is becoming impractical for many 
application fields due to the high cost and the relatively slow design cycle of custom 
fabrication. General purpose processors, on the other hand, remain unsuitable despite ever 
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increasing clock speeds and multimedia specific enhancements (such as Intel’s MMX [23] 
extensions), due to their relatively poor performance and high power consumption. Media 
applications, unlike many classes of programs, exhibit poor temporal locality and receive 
little benefit from automatically managed caches of conventional microarchitectures.  In 
addition, a significant fraction of media codes are characterized by predictable fine-grained 
data-parallelism that could be exploited at compile time with properly structured program 
semantics. However, most superscalar general-purpose processors are poor at dynamically 
exploiting this kind of parallelism, and are too expensive in terms of power consumption. 
Finally, many media programs require a bandwidth-oriented memory system; unlike 
conventional cache-based memory hierarchies that are entirely organized around reducing 
average latency time, and generally lack the raw bandwidth required for these applications. 
This paper presents two emerging media microprocessors, VIRAM and Imagine, and 
evaluates their potential efficacy for addressing the growing memory-gap of high-end 
numerical simulations. 

First we develop a scalable synthetic probe called Sqmat that allows us to 
parametize key performance attributes of VIRAM and Imagine. Sqmat was specifically 
designed to reveal architectural characteristics of the two media processors in this study. 
By varying Sqmat’s computational requirements, we explore the main architectural 
features of VIRAM and Imagine, and observe the crossover point where one technology 
becomes more suitable to the other. We then present two important scientific kernels, each 
requiring a different balance of microarchitectural resource to achieve high performance. 
The SPMV benchmark performs sparse matrix-vector multiplication, and is characterized 
by irregular data access and low computation per memory access. In contrast, our second 
scientific kernel QRD, performs the Householder QR factorization of complex matrices, 
and has a relatively high computational intensity for each data access. The purpose of this 
work is not to compare VIRAM and Imagine from a traditional benchmarking perspective. 
Instead, we use our scientific kernel codes to explore the salient features of these unique 
architectures, and define the program characteristics best suited for each of these radically 
different emerging technologies. 
 
2 Architecture, Programming Paradigm,  and Kernel Overview 
 
In this section we provide a brief overview of the two media processors examined in this 
study, a summary of their programming paradigms and a description of the scientific 
kernels used in our experiments. 
 
2.1 VIRAM  The VIRAM processor [2] is a research architecture being developed at UC 
Berkeley. A floor plan of the VIRAM-1 prototype chip is presented in Figure 1. Its most 
novel feature is that is complete system on a chip, combining processing elements and 13 
MB of standard DRAM into a single design. The processor-in-memory (PIM) technology 
allows the main RAM to be in close proximity to the processing elements, providing lower 
memory latency and a significantly wider memory interface than conventional 
microprocessors. The resulting memory bandwidth is an impressive 6.4 GB/s. VIRAM 
contains a conventional general purpose MIPS scalar processor on-chip, but to exploit its 
large bandwidth potential, it also has a vector co-processor consisting of 4 64-bit vector 



lanes. VIRAM has a peak performance of 1.6 GFlop/s for 32 bit data and is a low power 
chip, designed to consume only 2 Watts of energy. 

The hardware resources devoted to functional units and registers may be subdivided 
to operate on 8, 16, 32, or 64-bit data. When the data width (known as the virtual processor 
width) is cut in half, the number of elements per register doubles, as does the peak 
arithmetic rate. The variable data widths in VIRAM are common to other SIMD media 
extensions such as Intel’s SSE, but otherwise the architecture more closely matches vector 
supercomputers. In particular, the parallelism expressed in SIMD extensions are tied to the 
degree of parallelism in the hardware, whereas a floating-point instruction in VIRAM 
specifies 64-way parallelism while the hardware only executes 8-way. The advantages of 
specifying longer vectors include lower instruction bandwidth requirement, a higher degree 
of parallelism for memory latency masking, and the ability to change hardware resources 
across chip generations without requiring software changes.  
 
2.2 Imagine  A different approach for addressing the processor-memory gap is through 
stream processing. Imagine [12] is a programmable streaming microprocessor currently 
being developed at Stanford University. Stream processors are designed for 
computationally intensive applications characterized by high data parallelism and producer-
consumer locality with little global data reuse.  The general layout diagram of Imagine is 
presented in Figure 2. Imagine contains 48 arithmetic units, and a unique three level 
memory hierarchy designed to keep the functional units saturated during stream processing. 
The architecture is centered around a 128 KB stream register file (SRF), which reads data 
from off-chip DRAM through a memory system interface and sequentially feeds the 8 
arithmetic clusters. The local storage of the SRF can effectively reuse intermediate results 
(producer-consumer locality), allowing for the amortization of off-chip memory accesses. 
In addition, the SRF can be used to overlap computations with memory traffic, by 
simultaneously reading from main-memory while writing to the arithmetic clusters 
(double-buffering). The Imagine architecture emphasizes raw processing power much more 
heavily then VIRAM with a peak performance of 20 GFlop/s for 32 bit data. 

Each of Imagine’s 8 arithmetic clusters consists of 6 functional units containing 3 
adders, 2 multipliers, and a divide/square root. Imagine is a native 32-bit architecture; with 
support for performing operations on 16- and 8-bit data resulting in two and four times the 
peak performance respectively. This is analogous to VIRAM’s virtual processor widths; 
however, unlike VIRAM there is no support for 64 bit operations. Thus we restrict our 
study to 32-bit data elements. A key difference between the two architectures is in the way 
instructions are issued. In Imagine, a single microcontroller broadcasts VLIW instructions 
in SIMD fashion to all of the arithmetic clusters. In contrast, VIRAM uses a more 
traditional single instruction per cycle issue, counting on parallelism within each vector 
instruction to achieve high performance.   

Table 1 summarizes the high level differences between the VIRAM and Imagine 
architectures. Notice that Imagine has an order of magnitude higher peak performance, 
while VIRAM has twice the memory bandwidth and consumes half the power.  Also 
observe that VIRAM has enough bandwidth to sustain one operation per memory access, 
while Imagine requires 30 operations to amortize one word of off-chip memory, and 2.5 
operations for SRF references. In order to gain deeper insight into the two architectures, we 
constructed a scalable synthetic probe called Sqmat. Using this simple benchmark, with 



abundant fine-grained data parallelism and no data dependencies, allows us to examine a 
spectrum of computational requirements while correlating performance to the underlying 
architectural features. Details are presented in Section 3. 
   
2.3 Programming Paradigm and Software Environment 
 
The vector programming paradigm [20] of VIRAM is well understood and can leverage off 
of years of algorithmic research as well as sophisticated compiler technologies. Logically, a 
vector instruction specifies the parallel operations to be performed on all elements of the 
vector register. However, at the hardware level each vector instruction splits into multiple 
element groups that then perform the operations. For example, when operating on 32-bit 
data in VIRAM, the logical vector length refers to 64 elements while the physical 
configuration contains only 8 lanes. Therefore each vector instruction results in the 
execution of 64/8=8 element groups, where each group uses the actual vector hardware to 
process 8 elements at a time. 

Imagine supports the relatively new stream programming paradigm, designed to 
express the high degree of fine-grained parallelism necessary to effectively utilize the large 
number of functional units. The stream programming model organizes data as streams and 
expresses all computations as kernels [14]. A stream is an ordered set of records of 
arbitrary (but homogeneous) data-objects. For example, in a finite-element scientific 
simulation the computational stream could contain a set of records, where each record 
element represents various physical components of the experiment (such as pressure, 
velocity, position, etc.)  Vectors, on the other hand, are restricted to operating on basic data 
types, and must decompose complex records into vectors of separate elements. Kernels 
perform computation on entire streams, by applying potentially complex functions to each 
stream record in order. However, kernels cannot make arbitrary memory reference and are 
limited to only accessing data from the SRF in a sequential fashion. The kernel memory 
reference restrictions allow the memory subsystem to effectively provide data to the large 
number of functional units. However, these memory access limitations increase 
programming complexity, especially for irregularly structured applications. 

Both the vector and stream programming paradigms provide methods for 
expressing the fine-grained data parallelism of an application.  Providing for explicit 
parallelism in the ISA, allows the underlying hardware to directly support vectors or 
streams, in an energy-efficient manner. The application performance, however, is highly 
correlated to the fraction of the application amenable to data parallelism. A key distinction 
between the two models is that the Imagine architecture supports streams of multi-word 
records directly in the ISA, as opposed to VIRAM whose ISA support is limited to vectors 
of basic data-types. Going back to our finite-element example, Imagine is able to access the 
multi-word data records of the simulation in a unit-stride fashion from main memory. 
Appropriate reordering is then performed in the on-chip memory subsystem, before passing 
the correctly structured data to the SRF. However, in vector architectures, strided accesses 
are required to load each basic data type of the underlying physical component causing 
potential memory overheads, detailed in Section 3.2.1. This permits Imagine to access off-
chip main memory in a more efficient manner. Additionally, organizing streams as multi-
word records also increases kernel locality, allowing for efficient VLIW processing by each 



of the functional units. Other advantages of multi-word parallelism include the potential of 
reduced programming complexity and low instruction bandwidth. 

We end this section with a brief description of the software environment. In 
VIRAM, applications are coded in C using the vcc [16] vectorizing compiler. However, it 
is occasionally necessary to hand tune assembly instructions to overcome the deficiencies 
of  the compiler environment. In Imagine, two languages are used to express a program: the 
StreamC language is used to coordinate the streaming of data while KernelC is used to 
define the computational kernels to be performed on each stream record. Separate stream 
and kernel compilers then map these two languages to the ISA of the stream controller and 
micro-controller respectively. The Imagine software environment allows for automatic 
code optimizations such as loop-unrolling and software pipelining, as well as visual tools 
for isolating performance bottlenecks. The results reported in this paper were gathered from 
the VIRAM and Imagine cycle-accurate simulators.  
 

2.4 Scientific Kernels  The first scientific kernel we examine is sparse matrix vector 
multiply SPMV. This is one of the most heavily used algorithms in large-scale numerical 
simulations, and is a critical component in data mining, as well as signal and image 
processing applications.  For example when solving large sparse linear systems or 
eigensystems, the running time is generally dominated by the SPMV kernel. The 
performance of sparse matrix operations tends to perform poorly on modern 
microprocessors due to the low ratio between arithmetic computation and memory 
accesses. Additionally, the irregular data access of this algorithm is inherently at odds with 
cache-based architectures. It is therefore important to evaluate the performance of VIRAM 
and Imagine in the context of SPMV.  

Our second scientific kernel is the QR decomposition of a complex floating-point 
matrix (QRD). QRD is a well-known linear algebra algorithm commonly used in scientific 
computing and signal processing applications. It is also a key component of a larger space-
time adaptive processing application (STAP), which is used to cancel clutter and 
interference in airborne radar images [5]. Unlike the SPMV kernel, QRD is a dense matrix 
method with a high operation count for each word of data access.  We therefore evaluate 
the performance behavior of VIRAM and Imagine for two scientific kernels, each with 
vastly different computational requirements and data access patterns. 
 
3 Insights Into the Architectures 
 
In order to gain insight into the architectural differences between VIRAM and Imagine, we 
constructed a scalable synthetic probe called Sqmat. This specially designed 
microbenchmark has several tunable parameters used to isolate key characteristics of both 
systems, and capture the performance crossover point of these radically different 
technologies.  
 
3.1 Sqmat Overview   The computational task of Sqmat is to square a set of L matrices of 
size NxN repeatedly M times. By varying N and M, we can control the size of the 
computation kernel, as well as the number of arithmetic operations per memory access. In 
addition, by varying the number of matrices (L) we can correlate the vector/stream length 
with performance.  



The squaring of each NxN matrix requires N3 multiplications and N2 (N-1) 
additions, while requiring 2N2 memory accesses (loading and storing 32 bit words). On 
VIRAM the minimum number of cycles (algorithmic peak) required to perform M repeated 
squarings of L matrices is L M (2N3- N2)/8, since each of the 8 vector lanes can perform one 
32-bit flop per cycle. Additionally, the total number of operations per word of memory 
accessed in VIRAM is M (2N3-N2)/2N2 =M (2N-1)/2. However, the analysis is somewhat 
different for Imagine since it contains multiple functional units per cluster and operates in 
VLIW fashion.  To calculate Imagine’s algorithmic peak performance, we can effectively 
ignore the cost of addition operations because Imagine can perform 3 adds and 2 multiplies 
per cycle, while the Sqmat benchmark requires fewer additions than multiplications. As a 
result Imagine’s peak performance for Sqmat requires only L M N3/16 cycles, since each of 
the 8 clusters can perform 2 multiplies per cycle. Additionally, the ratio between the 
number of multiplies performed per memory access is M N3/2N2 = N M/2. Thus for the 
Sqmat example, Imagine is required to sustain about twice the memory bandwidth of 
VIRAM to keep its functional units optimally saturated. Finally, note that due to limitations 
imposed by the number of VIRAM vector registers, N could be no larger then 3 for the 
repeated squaring (M>1) experiments. 
 
3.2 Sqmat Performance  We start by setting the Sqmat probe to the low end of the 
performance spectrum and work our way up to high efficiency, at each point highlighting 
the relevant architectural features. Our goal is not use Sqmat for benchmarking  these 
systems, but rather as a tool for gaining insight into their key architectural features. 
 
3.2.1 Low Operations per Memory Access  In our first experiment, we examine 5 
matrices (N=1..5), with a single matrix squaring (M=1) and short vector/stream length 
(L=16). Limiting this example to only a single squaring of the matrices causes relatively 
few operations per word of data access and results in high stress on the memory system. In 
addition, the short vector/stream lengths deleteriously affect the performance of both 
architectures. Table 2 shows the percentage of theoretical peak achieved on VIRAM and 
Imagine. Notice that both architectures show poor performance for low N, achieving only 
4.0% and 0.1% respectively. As N increases, so does the ratio of computation to memory 
access; thus improving performance. However, for N=5 Imagine’s performance is still very 
poor achieving only 2.9% of peak. VIRAM, on the other hand, sustains 36.9%, a 
surprisingly large fraction of its peak performance considering the low volume of required 
computations and short vector length.  

Figure 3 compares performance between VIRAM and Imagine for N=3 of a single 
matrix squaring (M=1), but here we examine the effects of increasing the vector/stream 
length varying L from 8 to 1024. Imagine’s stream model requires large number of 
arithmetic operations per memory access to effectively use the underlying hardware. 
Therefore this benchmark example is not well suited for the Imagine architecture. The 
computational rate is too low to amortize off-chip memory bandwidth, and the SRF is not 
being used effectively since there is no producer-consumer locality in this example.  
Another requirement for good streaming performance is that the stream must be long 
enough to hide memory latency. Figure 3 shows that as L is increased from 8 to 1024, peak 
performance gradually improves, but plateaus at only 7% of peak performance for N=3. For 
each kernel called, there are a number of overheads, including: sending the instructions 



from the host to the microcontroller, scheduling the SRF, and filling/draining the software 
pipeline. Thus performance is expected to improve with larger L since these costs are 
amortized. Additionally, increasing the stream size helps amortize expensive off-chip 
memory latency.  

For VIRAM, on the other hand, performance starts low but quickly grows with L to 
a reasonable fraction of Sqmat’s theoretical peak performance, achieving almost 40% when 
L 256. The vector pipelines effectively hide memory access overheads by overlapping 
loads with arithmetic operations. In addition, the on-chip DRAM allows for high-
bandwidth and low latency memory access. These examples demonstrate that the 
architectural balance of VIRAM is better suited for this difficult class of problems, 
characterized by low computational requirements and relatively short vector lengths. 

A critical issue in determining performance on VIRAM, however, is the memory 
access patterns. Table 3 shows performance for N=1, M=1 and L=256 for various strides, 
both with and without address generation. Best performance is achieved when using unit-
stride and no address generation as seen in column two. The third column demonstrates the 
effects of using the same unit-stride memory access pattern, but with address generation 
turned on in the assembly instructions: resulting in a 46% degradation of Sqmat’s 
performance. This is because VIRAM can only generate 4 addresses per cycle, independent 
of the data width. Although for 64-bit values there is sufficient address generation to load 
or store a value every cycle, but when working with the 8 32-bit lanes, the arithmetic units 
can more easily be starved for data. On the fourth and fifth columns performance 
significantly degrades due to both non-unit stride memory access patterns and the necessity 
of memory address generation. As we increase the memory stride, the DRAM bank 
structure can become apparent as multiple accesses to the same bank requires additional 
latency to charge the DRAM. The frequency of the bank-conflicts depends on the memory 
access pattern as well as number of banks and subbanks in the memory system.  Stride 
effects are not as pronounced in Imagine, however, due to the on-chip streaming memory 
system, which allows multi-word records to be read in unit stride from main-memory and 
uses reorder buffers to properly arrange the data into the SRF, as discussed in Section 2.3. 
 
3.2.2 High Operations per Memory Access  Table 4 presents performance results when 
the matrix is repeatedly squared (M=1,10,20), using the 3x3 matrix and a relatively large 
vector/stream length of 1024. As expected, both architectures achieve higher percentage of 
peak as M increases since there is more required computation for each word of data access. 
VIRAM achieves close to peak performance at 82% and 89% for M=10,20 respectively, an 
increase of more than a factor of 2 from the M=1 experiment. Imagine’s performance also 
improves to 38% (M=10) and 49% (M=20) efficiency, a 7x improvement from the single 
squaring (M=1) experiment.  

One reason for the impressive improvement in Imagine’s performance is that the 
computational kernel is now significantly bigger. For small K, the number of arithmetic 
operations per kernel call is small, and the fixed overheads of each kernel call can dominate 
performance. These overheads include reading and writing from the SRF to the clusters, 
and filling/draining the kernel pipeline. For example, for the 3x3 matrix with M=1, the 
kernel’s ideal execution time is 14 cycles, however each actual kernel execution requires 
34 cycles, meaning that only 41% of the operations are going towards matrix 



multiplication. However, when the kernel size is increased to N=5 and M=10, the efficiency 
of each kernel call rises to 91%. 

Although Imagine’s performance has significantly improved from the M=1 
experiment in Section 3.2.1, it still achieves less then 50% efficiency for the large stream 
size (L=1024). This is somewhat surprising since the ratio between multiplications and 
memory access is now 30, which should be enough operations to fully saturate the 
computational units and amortize off-chip memory references. These results demonstrate 
that for the Imagine stream architecture a very large number of ops per word are required to 
fully utilize the underlying hardware. However, Imagine’s 50% efficiency in Sqmat 
translates to 8GFlop/s of performance, showing there are sufficient computational 
requirements in this parameter set to effectively utilize the large-scale processing power of 
the Imagine architecture.   

A key aspect of the streaming paradigm is the concept of producer-consumer 
locality, where data is circulated between the SRF and arithmetic clusters, thereby avoiding 
expensive off-chip memory access. We explore this architectural feature by using two 
different approaches to perform Sqmat’s repeated matrix squarings, while keeping the 
number of operations fixed (constant M). The first method of achieving a given M is to 
make the kernel more computationally intensive, as is performed in VIRAM. Imagine, 
however, allows a second approach where producer-consumer locality is utilized by using a 
less computationally intensive kernel and repeatedly passing the partial matrix product 
through the SRF until the calculation is complete.  We therefore define K as the number of 
times the matrix is squared in the kernel, and S as the number of times that kernel is 
repeatedly called, where M=K S.   By varying K and S, we can explore the effect of 
producer-consumer locality on kernel performance. 

Figure 4 shows the percentage of peak performance for various combinations of K 
and Son Imagine. Stream length (L) here is set to very large optimal values to avoid any 
short-stream effects4. Notice that in order for the producer-consumer locality to work 
effectively, the kernel computations must be high enough to amortize the fixed kernel 
overheads. This can be seen by from the K=1 data set where performance is significantly 
below K=5,10 even though the total number of matrix squarings are the same. However, we 
see littler difference in the percentage of peak performance when K equals 5 and 10, 
showing that producer-consumer locality can be effectively used when the computational 
kernels are reasonably large. Finally, observe that even though up to 600 multiplications 
are performed for each word of data access, the percentage of theoretical peak plateaus at 
only 70%. This phenomenon is due to the SRF bandwidth effects, as well as fixed kernel 
overheads; demonstrating that producer-consumer computational intensity is not sufficient 
to fully saturate the arithmetic clusters, if the underlying kernels do not perform very large 
numbers of operations.  
 
3.2.3 Peak Performance and Crossover  Table 5 presents VIRAM and Imagine 
performance on Sqmat  under ideal conditions. By running Sqmat using high 
computational requirements together with optimal vector/stream lengths, we can effectively 
mitigate memory access penalties and achieve over 90% of theoretical peak performance 
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on both architectures. Notice that for the Imagine case the matrix size had to be increase to 
N=5 to overcome fixed kernel overheads. 

Finally, Figure 5 presents the performance crossover point where Imagine 
outperforms VIRAM in terms of cycles (L 256) and MFlop/s (L 64). Here the raw 
processing power advantages of Imagine become apparent, achieving almost a 4x 
performance increase over VIRAM in terms of MFlop/s for L=1024. Codes characterized 
by this balance of computational intensity and memory requirements would greatly benefit 
from Imagine’s streaming architecture.  
 
4  Sparse Matrix Vector Multiplication 
 
For the SPMV kernel we examined 3 different implementation strategies for Imagine and 
VIRAM, each of which highlights different aspects of the underlying architecture. We 
chose two matrices for this experiment, each with different characteristics that enable us to 
explore how architectural and programming differences affect performance. The first 
matrix LSHAPE is from Harwell-Boeing collection and represents a finite matrix problem. 
It is a 1008x1009 matrix with an average of 6.8 nonzeros and a maximum of 7 nonzeros 
per row. Our second matrix LARGEDIS is the same one used in previous IRAM 
experiments [9], and contains a pseudo-random pattern of non-zeros using a construction 
algorithm from the DIS specification [8], parameterized by the matrix dimension, and the 
number of nonzeros. The input matrix size is 10000x10000 with an average of 18 nonzeros 
and a maximum of 82 nonzeros per row. 
 
4.1 VIRAM Implementation  We consider 3 algorithms for the SPMV implementation on 
VIRAM [9], each reflecting a different optimization strategy for vector architectures. 
Compressed Row Storage (CRS) is the most common sparse matrix format, which stores an 
array of column indices and non-zero values for each row; SPMV is then performed as a 
series of sparse dot products. The second approach uses the Ellpack (or Itpack) format [15], 
which forces all rows to have the same length by padding them with zeros. It still has 
indexed memory operations, but increases available data parallelism through vectorization 
across rows. Finally, we experimented with the segmented sum (Segsum) algorithm, 
originally developed for the Cray PVP [4]. The data structure is an augmented form of the 
CRS format and the computational structure is similar to Ellpack, although there is an 
additional control complexity. Since VIRAM can only generate four addresses per cycle, 
the large stride memory access is slow, as discussed in Section 3.2.1. Therefore, we 
modified the original code to make it unit stride. 
 
4.2 Imagine Implementation A key component of Imagine’s streaming paradigm is that 
the computational clusters can only access data in a sequential fashion from the SRF. 
However SPMV requires irregular data access to properly index the source vector.  
Therefore, in all of the Imagine SPMV implementations, the data is properly reordered 
from main-memory into the SRF to avoid the need for any indirect addressing during 
computation. Additionally, the indexed source vector stream is expanded to as many 
elements as in the sparse matrix, since it is not possible to arbitrarily access the vector data. 

Our first Imagine implementation uses the Compressed Row Storage (CRS) format 
and performs a series of sparse dot products. However, since the rows have different 



numbers of nonzeros, assigning each cluster to sum a unique row is inefficient since the 
lock-step execution of the SIMD architecture would limit performance to the longest 
computation. Our algorithm therefore uses all eight arithmetic clusters to process one row 
at a time, using intercluster communication to perform the summation reduction. Note that 
in this algorithm, conditional input and output streams are used to selectively fetch the 
correct number of row elements and properly output the result only when the row 
computation is complete. Since the kernel language has extremely restricted conditional 
syntax, conditional streaming [13] allows a number of important operations, such as 
handling data-dependent control constructs, merging or appending streams, and limited 
load balancing.  

Our next implementation strategy (Streams) leverages the stream concept of 
producer-consumer locality. Here, in addition to the matrix and indexed vector, the 
computational kernel receives a third (sentinel) stream indicating which nonzeros entries 
are at the end of a row. Based on this information, the arithmetic clusters selectively sum 
two elements if they are determined to be on the same row. The partial sum is repeatedly 
passed through the computational kernel until the dot product summation is complete. The 
third version is an Imagine implementation of the VIRAM Ellpack algorithm. In this 
routine we fill the rows of the sparse matrix such that each has the same number of non-
zeros. Each cluster then performs all of the required multiply-adds on a given row and 
outputs the corresponding entry of the result. This results in a very simple kernel, but its 
performance is dependent on the length of the row. 
 
4.3 Performance Results  Table 6 presents the performance results of SPMV on VIRAM 
and Imagine using the LSHAPE and LARGEDIS matrices. Note that algorithmic peak 
performance of SPMV on VIRAM is 8 operations per cycle (one for each vector lane), 
while on Imagine arithmetic peak performance is 32 operations per cycle (2 multiplies and 
2 adds for each of 8 clusters).  Comparing SPMV performance using the original matrix 
patterns (CRS, Segsum, and Streams) performance is rather low due to the lack of 
parallelism, since the average rows of LSHAPE and LARGEDIS contain only 8 and 18 
nonzeros respectively. However, notice that VIRAM achieves a  significantly higher 
fraction of peak performance than Imagine (8.4% vs. 1.5% on LARGEDIS).  Imagine’s 
SPMV Streams implementation sustained particularly poor performance of less then 1% 
efficiency. We believe that this was partially due to the unpredictable length of the output 
streams after each kernel cycle, which caused the stream scheduler to function inefficiently. 

Results are even more dramatic when comparing the Ellpack (filled) 
implementations. Here VIRAM attains 31% and 32% of peak respectively compared with 
1.2% and 6.3% in the Imagine versions, and requires fewer total cycles. However, Imagine 
still achieves higher MFlop/s for certain algorithm comparisons due to its large 
computational potential. Note, that since the Ellpack matrices are artificially padded with 
zeros to create symmetric row lengths, the fraction of useful operations can be arbitrarily 
poor depending on the matrix structure. However, this fraction of useful computations 
would penalize the effective performance of both architecture equally. These experiments 
demonstrate VIRAM’s ability to effectively handle codes with low operations per data 
access and validates our conclusions of Section 3.2.1. 
 



5 Complex QR Decomposition 
 
In the QR decomposition, a matrix A is decomposed as A=QR, where Q is a orthogonal and 
R is a upper triangular matrix. A standard way of performing this decomposition is to use 
Householder transformations: orthogonal transformations that annihilate the lower part of 
each column (i.e., the part of the column below its diagonal element) of the matrix A, thus 
producing R. If performed in a column-by-column manner, (computing a Householder 
transformation for each column and updating the subsequent columns of A using that 
transformation) this process is rich in level-2 BLAS [18] operations of matrix-vector 
multiplication and outer product updates [10].  
 
5.1 VIRAM and Imagine Implementations In order to increase the computation to 
memory ratio of the Householder QR, we use block variants of the algorithm, that are rich 
in level-3 BLAS operations. These block methods consider a block of columns and 
factorize them (using the Householder QR) to obtain an upper triangular (a diagonal block 
of R) matrix, as well as the transformation used to decompose this block. The 
transformations are stored in a suitable matrix representation and then applied to the 
subsequent columns of the matrix, and the computation begins anew with a new column 
block. One representation of the blocked Householder is the so-called compact-WY 
representation [3,24], which involves matrices Y, and T, that obey the identity A=(I-
YTYH)R, where I-YTYH=Q (YH is the conjugate transpose of Y). The reader is referred to 
[10] for a complete description of the blocked Householder QR. Both VIRAM and Imagine 
implementations use this blocked algorithm, to decompose a matrix A of complex 
elements. The use of complex elements enhances the computational intensity (ops/word) 
and the locality of the algorithm, since each complex multiplication expands to six 
arithmetic operations.  

VIRAM implementation is a port of the CLAPACK [1] routine CGEQRF and its 
associated BLAS [18] routines. In the VIRAM implementation, columns are considered in 
blocks of 32 and the whole implementation is composed of calls to BLAS routines. The 
optimization process was straightforward and involved insertion of vectorization directives 
[20] in the source code of BLAS routines. For certain BLAS routines, loops were 
interchanged, converting large stride accesses to smaller ones to avoid the overheads 
described in Section 3.2.1. For instance, SAXPY version of matrix-vector multiply would do 
considerably better than the dot-product version [16], for matrices stored in column-major 
order (as in CLAPACK[1]). This is because the latter implementation requires strided 
accesses, in addition to the expensive reductions for computing the sum.  

The Imagine implementation described in [19] also uses a blocked algorithm. 
Blocks of 8 columns are fed into kernels that compute the R matrix for that block. The 
Householder transformation is also computed at this point. This transformation is then 
applied to the subsequent column blocks of the matrix and the process iterates. Some 
complicated indexing of the matrix stream need to be performed as each iteration of the 
process requires smaller and smaller matrices. 
 
5.2 Performance results The performance of QR on a 192-by-96 (m-by-n) complex matrix 
A, taken from the Mitre RT_STAP benchmark suite [5], is shown in Table 7. Note that this 
algorithm requires 8mn2  operations. VIRAM sustains only 34.1% of its theoretical 



hardware peak on this computationally intensive kernel, chiefly due to memory accesses 
with large stride, and achieves 546 MFlop/s. Imagine, on the other hand, performs at over 
65% efficiency and shows an impressive speed of over 13 GFlop/s [14,19]5, an 
improvement of almost 24x in raw processing power over VIRAM . These results 
demonstrate the considerable performance can be obtained on Imagine on classes of 
computations with high operations per memory access, as described in Section 3.2.2.  
 
6 Conclusions and Future Work 
 
In this work we successfully demonstrated the overlap between emerging high-end media 
processors and scientific computations. We were able to gain insight into the salient 
features of VIRAM and Imagine in the context of numerical kernels, and quantify the 
computational space best suited for each processing paradigm. First, we developed a 
scalable synthetic probe, Sqmat, which allowed us to parameterize key features of the 
architectures. By varying a small set of parameters we explored performance in the context 
of: computational intensity, vector/stream length, memory access patterns, kernel 
overheads, producer-consumer locality, and hierarchical memory structure. Two important 
scientific kernels each with distinct program behavior were then presented. We showed that 
the SPMV kernel, characterized by low operations per data access and irregular memory 
access, mapped to the low end of Sqmat’s performance spectrum; Whereas the high end of 
Sqmat’s spectrum was correlated to QRD, a dense algorithm requiring high computational 
intensity.  

We also discussed the complex interactions between programming paradigms, 
architectural support at the ISA level and the underlying micoarchitecture of these two 
systems. The Sqmat and QRD benchmarks were able to leverage the multi-word record 
support of the streaming architecture. Although VIRAM’s compiler was able to vectorize 
these multi-word codes, it was restricted to using the native vector instructions which only 
operate on basic-data types. As a result, VIRAM was forced to incur the overhead of 
strided memory accesses. However,  program development was more challenging in 
Imagine than in the well-known vectorization paradigm, because the programmer is 
exposed to the memory hierarchy and cluster organization of the Imagine architecture. 
Improvement in the quality of the compiler and software development tools, and 
abstracting lower level details of the hardware will be essential in bringing the stream 
programming model to the wider scientific community. Brook [7] and StreamIt [25] are 
two examples of recently proposed high-level streaming languages that attempt to increase 
programmer productivity while achieving high performance.  

 Future plans include validating our results on real hardware as it becomes 
available, as well as examining a broader scope of scientific codes. We plan to evaluate 
more complex data-parallel systems such as the Streaming Supercomputer [7] and the Diva 
[11]. Our long-term goal is to evaluate these technologies as building blocks for future 
high-performance multiprocessor systems.   
 
 
 

                                                 
5 As of this time we have been unable to reproduce these results. We are currently working with the Stanford team to 
resolve any inconsistencies.  
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 VIRAM 
Imagine 
Memory 

Imagine 
SRF 

Bandwidth GB/sec 6.4 2.7 32 

Peak Flops GFlop/s 

(32 bit) 
1.6 20 20 

Peak Flop/Word 1 30 2.5 

Clock Speed MHz 200 500 

Chip Area 15x18mm (270 mm2) 12x12mm (144 mm2) 

Data widths 

supported 
64/32/16 bit 32/16/8 bit 

Transistors 130 Million 21 Million 

Power consumption 2 Watts 4 Watts 

Table 1:Highlights of VIRAM and Imagine architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Figure 1: Block diagram of the VIRAM architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Overview of the Imagine architecture 

 



 

N 1 2 3 4 5 

VIRAM 4.0% 19.0%  25.5% 25.3% 36.9% 

IMAGINE 0.1% 0.7% 1.4% 2.3% 2.9% 

Table 2: Percentage of algorithmic peak performance of VIRAM and Imagine with M =1 and L =16 
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Figure 3: Percentage of algorithmic  peak performance of VIRAM and Imagine for varying 

vector/stream lengths when N =3 and M = 1 

 
 
 

Stride 1 1 2 4 

Address 
Generation No Yes Yes Yes 

Cycles 118 173 186 298 

Table 3: Number of VIRAM cycles using various stride patterns, with and without address generation, 
for N =1, M =1, and L =256 

 
 
 
 
 

M VIRAM IMAGINE 
1 39% 7% 

10 82% 38% 
20 89% 49% 

Table 4: Percentage of algorithmic peak performance of VIRAM and Imagine for N =3, M = 1,10,20 
and L =1024  
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Figure 4: Percentage of algorithmic  peak performance of Imagine with N =3 and K=1,5,10 using long 

streams and varying computational intensity 

 
 
 
 

 VIRAM (N=3) Imagine (N=5) 

Ops/Word 50 90 120 150 100 200 300 400 

% Peak 82% 88% 89% 91% 86% 89% 90% 91% 

Table 5: Achieving high efficiency for VIRAM and Imagine using long streams and high computational 
intensity 
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Figure 5: Performance crossover between VIRAM and Imagine for N =3 and M =10 



 
 VIRAM Imagine 

Matrix 
Rows 
(Nonzeros) 

Performance CRS Segsum Ellpack CRS Streams Ellpack 

% of Peak 2.8% 7.4% 31% 1.1% 0.8% 1.2% 

Total cycle 66823 23802 5666 40300 48190 37930 
LSHAPE 
1008 
(6958) MFlop/s 44 118 496 170 142 186 

% of Peak 3.2% 8.4% 32.0% 1.5% 0.6% 6.3% 

Total cycle 802070 567491 641512 742310 1840380 753540 
 

LARGEDIS 
10000 
(177820) 

MFlop/s 91 135 511 240 97 1088 

Table 6: Performance of SPMV on VIRAM and Imagine for the LSHAPE and LARGEDIS matrices 
using various algorithms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Matrix Performance 
VIRAM Imagine 

% of Peak 34.1% 65.5% 

Total 

Cycles 
5188817 712770 

MITRE 
RT_STAP 
192-by-96 
complex 
matrix MFlop/s 546 13,100 

Table 7: Performance of QRD on VIRAM and Imagine for the 192-by-96 MITRE RT_STAP matrix 
 

 
 
 


